Theme
Research
Teaching
Resume/CV
Chapter 2Sets and Operations
Note 2.1: My long note
This is the NOTE environment!!
asd
Note 2.2: My long note
This is the NOTE environment!!
asd
Note 2.3: Test HMR refer to note-env
This is a test note to verify HMR works!
Note 2.4: Testing Hot Module Reload
This is a test note to verify HMR works!
Note 2.5: Test HMR refer to note-env-2
This is a test note to verify HMR works!
Note 2.6: Test HMR refer to note-env-2
This is a test note to verify HMR works!
Note 2.7: Test HMR refer to note-env-2
This is a test note to verify HMR works!
Note 2.8: Test HMR refer to note-env-2
This is a test note to verify HMR works!
Note 2.9: Test HMR refer to note-env-2
This is a test note to verify HMR works!
Note 2.10: Test HMR refer to note-env-2
This is a test note to verify HMR works!
Note 2.11: Test HMR refer to note-env-2
This is a test note to verify HMR works!
Note 2.12: Test HMR refer to note-env-2
This is a test note to verify HMR works!
Definition 2.1: My def
Some def
Definition 2.2: My def 2
Some def
Definition 2.3: My def 3
Some def

Here is the reference to the note environment: note-env[unresolved:note-env] and note-env-2[unresolved:note-env-2] and note-env-3[unresolved:note-env-3]

and note-env-4[unresolved:note-env-4] and aaaq[unresolved:aaaq] and def2[unresolved:def2] and def3[unresolved:def3] and note-env-5[unresolved:note-env-5] and note-env-6[unresolved:note-env-6] and note-env-7[unresolved:note-env-7] and note-env-8[unresolved:note-env-8] and note-env-9[unresolved:note-env-9] and note-env-a[unresolved:note-env-a] and note-env-b[unresolved:note-env-b], and note-env-c[unresolved:note-env-c]
Section 2.1List examples

Unordered

  • Apple
  • Banana
  • Cherry

Numeric with custom separator and start

  1. First item
  2. Second item
  3. Third item

Lettered and Roman

  1. Alpha
  2. Beta
  3. Gamma
  1. premise
  2. step
  3. conclusion
  4. conclusion
  5. conclusion
  6. conclusion
  7. conclusion
  8. conclusion
  9. conclusion
  10. conclusion
  11. conclusion
  12. conclusion
  13. conclusion
  14. conclusion

Greek (fallback demo)

  1. phase one
  2. phase two
  3. phase three

Deeply nested with defaults

  • Level 1 A
    1. Level 2 a
      1. Level 3 i
        1. Level 4 A
        2. Level 4 B
          1. Level 5 i
          2. Level 5 ii
      2. Level 3 ii
    2. Level 2 b
  • Level 1 B
Question 2.1: Basic membership
Let A = {1,2,3}\(A = {1,2,3}\). Is 2 \in A\(2 \in A\)?
Question 2.2: Compare \(A \cup B\) and A ∩ B
Given sets A\(A\) and B\(B\), explain the difference between A \cup B\(A \cup B\) and A \cap B\(A \cap B\).
Question 2.3: Power set size
For a finite set A\(A\) with |A| = n\(|A| = n\), what is |(A)|\(|(A)|\)?
Question 2.4: Determine whether A ⊆ B
Let A = {1,2}\(A = {1,2}\) and B = {1,2,3}\(B = {1,2,3}\). Is A \\subseteq B\(A \\subseteq B\)?
Question 2.5: Set identities with parts
Consider arbitrary sets A\(A\), B\(B\).
a
Difference vs intersection
State whether (A \setminus B) \cap B = \varnothing\((A \setminus B) \cap B = \varnothing\).
b
Symmetric difference
Express A \triangle B\(A \triangle B\) using unions and differences.
c
Idempotence
Prove A \cup A = A\(A \cup A = A\).
Question 2.6: Pairs from small sets
Let A={1,2}\(A={1,2}\), B={x,y}\(B={x,y}\).
a
List A × B
b
List B × A

q-sample-6[unresolved:q-sample-6]

Todo 2.1: My long todo
This is the TODO environment!!
\sqrt[[n]][xa]
\sqrt[n]{xa}
and x\(x\) and x^[22]\(x^{22}\) Here is the reference to the todo environment: todo-env[unresolved:todo-env] , answer-env[unresolved:answer-env], and goal-env[unresolved:goal-env]
Goal 2.1: My goal
This is the GOAL environment!!
Goal 2.2: My answer
This is the ANSWER environment!!
\begin[bmatrix] 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ \end[bmatrix]
\begin{bmatrix} 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ \end{bmatrix}
\begin[bmatrix] 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ \end[bmatrix]
\begin{bmatrix} 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ \end{bmatrix}
Equation 2.2: The long matrix \(m\)
k = \begin[bmatrix] 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ \end[bmatrix]
k = \begin{bmatrix} 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ 1 & 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4& 2& 3 & 4 \\ \end{bmatrix}
Equation 2.3: matrix \(k\)
  if (x < 44 && y > 2) { console.log(); }
  if (x < 44 && y > 2) { console.log(); }
  if (x < 44 && y > 2) { console.log(); }
  if (x < 44 && y > 2) { console.log(); }
4y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=8 4y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=8
4y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=8 4y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=8
4y+7z+4x=34y+7z+4x=34y+7z+4x=34y+7z+4x=34y+7z+4x=34y+7z+4x=34y+7z+4x=3 4y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=8
4y+7z+4x=34y+7z+4x=34y+7z+4x=34y+7z+4x=34y+7z+4x=34y+7z+4x=34y+7z+4x=3 4y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=8
3y-9z+1x=83y-9z+1x=83y-9z+1x=83y-9z+1x=83y-9z+1x=83y-9z+1x=83y-9z+1x=8 4y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=8
3y-9z+1x=83y-9z+1x=83y-9z+1x=83y-9z+1x=83y-9z+1x=83y-9z+1x=83y-9z+1x=8 4y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=84y-2z+6x=8
Equation 2.4: asdas A long title for the multiple equations to focus on.
The fist formula is: formula-oneEquation 2.1, formula-twoEquation 2.2 matrix \(m\), formula-threeEquation 2.3 matrix \(k\). The main formula is system-of-equationEquation 2.4 Multiple equations to focus on., containing: system-of-equation-1Equation 2.4—i function r(){if(Ct(n),n.value===tl){let o=null;throw new T(-950,o)}return n.value}, system-of-equation-2Equation 2.4—ii function r(){if(Ct(n),n.value===tl){let o=null;throw new T(-950,o)}return n.value} and system-of-equation-3Equation 2.4—iii function r(){if(Ct(n),n.value===tl){let o=null;throw new T(-950,o)}return n.value}
Section 2.2Basic Concepts

Sets provide the language of modern mathematics. The operations introduced here power later topics like probability (see def-probability-measureSTAT1F92: Def Probability Measure) and the structure of the real line used by trigonometry (e.g., angle measure in def-radianCHEM1P00: Def Radian). Visual intuition can start with Venn diagrams such as fig-sets-vennDoc Figure 2.1 A Venn diagram for two sets A and B with overlapping region A ∩ B..

Definition 2.4: Empty Set \(x^2\)
The empty set, denoted ∅, is the unique set containing no elements.
Definition 2.5: Subset
Given sets A and B, we say A is a subset of B, written A ⊆ B, if every element of A is an element of B.
Definition 2.6: Union
The union of sets A and B is A ∪ B = x : x ∈ A or x ∈ B .
Definition 2.7: Intersection
The intersection of sets A and B is A ∩ B = x : x ∈ A and x ∈ B .
Definition 2.8: Set Difference
The difference A \ B = x : x ∈ A and x ∉ B contains the elements in A but not in B.
Definition 2.9: Power Set
The power set of A, denoted 𝒫(A), is the set of all subsets of A.
Two-set Venn diagram
Figure 2.1. A Venn diagram for two sets A and B with overlapping region A ∩ B.
Example 2.1: Basic Set Identities
For any sets A and B: (A ∪ B) \ B = A \ B and (A ∩ B) ⊆ A. These identities are visible in fig-sets-vennDoc Figure 2.1 A Venn diagram for two sets A and B with overlapping region A ∩ B..
Theorem 2.1: Inclusion–Exclusion for Two Sets
For finite sets A and B, one has |A ∪ B| = |A| + |B| − |A ∩ B|.
Proof 2.1:
Each element of A ∪ B is counted once in |A| + |B|, except elements in A ∩ B which are counted twice; subtracting |A ∩ B| corrects the overcount.
Section 2.2.1Symbol Summary
Table 2.1. Common set-theoretic symbols
Common set-theoretic symbols
SymbolNameMeaning
Empty setNo elements
SubsetA ⊆ B means every element of A lies in B
UnionElements in A or B
IntersectionElements in both A and B
\DifferenceElements in A but not in B
𝒫(A)Power setAll subsets of A
Section 2.3Cartesian Products and Relations

Cartesian products support coordinates and functions—essential for geometry in ch-trigCHEM1P00: Ch Trig and for joint events in ch-probSTAT1F92: Ch Prob.

Definition 2.10: Cartesian Product
For sets A and B, the Cartesian product is A × B = (a, b) : a ∈ A, b ∈ B .
Definition 2.11: Relation
A relation on a set A is any subset R ⊆ A × A.
Definition 2.12: Equivalence Relation
A relation ~ on A is an equivalence relation if it is reflexive, symmetric, and transitive.
Example 2.2: Equivalence Classes
Congruence modulo n on ℤ is an equivalence relation; each class [a] contains integers differing by multiples of n.
Cartesian coordinate grid
Figure 2.2. A Cartesian grid for visualizing A × B as points in the plane.
Section 2.4Sigma-Algebras and Countability

The measurable structures used in probability (see def-probability-measure[unresolved:def-probability-measure]) are built from σ-algebras; countability arguments justify many constructions.

Definition 2.13: Sigma-Algebra
A σ-algebra 𝔽 on a set Ω is a nonempty family of subsets of Ω closed under complements and countable unions.
Theorem 2.2: Countable Union of Countable Sets
A countable union of countable sets is countable.
Proof 2.2:
Let Aₙ be countable sets. Enumerate each Aₙ as aₙk : k ≥ 1. Traverse the array (n, k) by diagonals and list each new element when first encountered; this yields an enumeration of ⋃ₙ Aₙ.
Example 2.3: Borel σ-algebra
The Borel sets on ℝ form the smallest σ-algebra containing all open intervals. They support integration, limits, and random variables (see def-random-variable[unresolved:def-random-variable]).
test test change